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ABSTRACT

Modal absorbing boundary conditions are applied to a
graded mesh using the hybrid node, and to homogeneous
waveguides of arbitrary cross-section. The best
performance is obtained with rectangular waveguides but
examples show that the method can also be used for other
geometries. A T-junction circular - to - sidecoupled
rectangular waveguide example is given.

INTRODUCTION

The transmission-line matrix (TLM) method of
electromagnetic analysis with the symmetrical condensed
node (SCN) [1] is well established. When modelling
discontinuities in waveguides, there is a need to keep the
TLM mesh as small as possible by terminating the input
and output ports with absorbing boundary conditions
(ABC’s). Wideband ABC’s are essential if full advantage
is to be taken of the ability of time domain methods to
obtain frequency characteristics over a very wide
frequency spectrum from a single simulation. An ideal
ABC can be implemented by convolving each of the
voltage pulses, incident from link-lines intersecting the
ABC, with the impulse response of an infinite length of
waveguide. However, in the case of homogeneous
waveguides, where there are well defined modes with a
frequency independent configuration, the computational
effort can be reduced by first extracting the mode
amplitude, performing a single convolution, and then re-
injecting the mode shape with the resulting amplitude. The
characteristic impulse response of the TLM network can
be considered as a discrete time domain modal Green’s
function. The method was first implemented for the
dominant mode in a rectangular waveguide by Eswarappa
et al [2,3] and was extended to the multi-mode case by

Righi et al [4,5]. The approach has also been used in
FDTD [6]. In addition to ABC’s, the same technique can
be used to represent efficiently waveguide stubs [7]. In this
paper, modal ABC’s are first applied to a graded mesh
using the hybrid node formulation. Secondly, the approach
is extended to homogeneous waveguides of arbitrary cross-
section where the mode configuration may not be known
analytically.

APPLICATION TO RECTANGULAR WAVEGUIDES
WITH HYBRID NODE GRADED MESH

For rectangular waveguides, the modal field
distribution is well known. In the application of modal
boundary conditions to TLM, it is convenient to work
directly with the voltage pulses, rather than with the total
tangential field components. This is possible because the
link-line voltages are a linear combination of the electric
and magnetic fields. For a graded mesh using the hybrid
node, three different impedances are assigned to the three
sets of link-lines contributing to each component of the
magnetic field [8]. The modal Green’s function is
determined by the timestep and the node dimension
perpendicular to the boundary; it is independent of the
mesh grading in the cross-section.

Typical Green’s functions for the dominant mode in a
WR28 waveguide are shown in the frequency domain in
fig. 1, for the cases of (i) cubic nodes with the maximum
timestep, (ii ) cubic nodes with half the maximum timestep,
and (iii ) cuboid nodes of twice the length in the
perpendicular direction and with the maximum timestep.
As the frequency increases, the curves tend towards the
link-line reflection coefficient needed to match the TLM
mesh to free-space:
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∆l is the perpendicular node spacing,∆t is the timestep and
c is the speed of light.

For accurate extraction of the mode amplitudes, the
node dimensions must be of constant size in each quarter-
sine (90˚) variation of the field profile, in both directions.
If this condition is not met, there can be numerical
coupling between modes. The restriction can be relaxed if
it is known that only a single mode is incident upon the
boundary.

APPLICATION TO HOMOGENEOUS WAVEGUIDES
OF ARBITRARY CROSS-SECTION

For homogeneous waveguides of arbitrary cross-
section, the mode configuration can be obtained from two
previous two-dimensional simulations. It is convenient to
use a slice of three-dimensional nodes for this purpose.
The cutoff frequencies are obtained from the first
simulation and then, in the second, the Fourier transform
of the appropriate voltage pulses is computed at these
frequencies over the whole plane. If this involves sampling
at the excitation point, care must be taken to ensure that the
excitation does not introduce any unwanted artifacts into
the result, for example, by applying a suitable window
function in time. Even when the mode configuration is
known analytically, it can still be appropriate to obtain the
coupling matrix from a TLM simulation, so that the field
profile exactly matches the discrete geometry of the
system.

To form the modal coupling matrix, the complex
output from the Fourier transform must be converted to
real numbers. The magnitude can be taken if the field is
orientated in a single direction, otherwise the complex
numbers can be resolved at an arbitrary phase angle,
provided it is away from the field minimum. Often it is
appropriate to simply take the real part. The resulting
matrix can be used directly to convert from mode
amplitudes to TLM voltage pulses. To convert back to
mode amplitudes, a new matrix is formed in which each
element is multiplied by the area of the corresponding
node, and then a scaling factor is applied so that the
conversionsto modes andfrom modes are consistent. The
voltage pulses incident on the boundary are then multiplied
by the elements of this matrix.

For modes of type TEn,0 in rectangular waveguides
aligned with the coordinate axes, voltage pulses of one
polarization are considered. For modes of type TEn,m
(m>0), there is a corresponding TMn,m mode. When
working directly with the TLM voltage pulses, both TE
and TM modes are processed together by using separate

modal Green’s functions for the vertical→vertical,
horizontal→horizontal and vertical�↔horizontal coupling.
This involves four convolutions since the
vertical→horizontal and horizontal→vertical convolutions
are independent. The same approach can also be used for
other waveguide cross-sections. However, for some
geometries, both vertical and horizontal voltage pulses are
needed to describe only a single mode. For the TE1,1 mode
in a circular waveguide, it can be convenient to obtain the
mode amplitude from just the vertical voltage pulses (with
the mode aligned top-to-bottom) since the horizontal field
is not large. In this case, only vertical→vertical and
vertical→horizontal convolutions are needed.

The reflection coefficient of practical ABC’s can be
calculated as an S-parameter, from a knowledge of the
total voltage and the incident voltage at the input port, as
shown in fig. 2a. The reference structure is used to obtain
the incident voltage, and the lengthl1 is chosen so that
voltage pulses reflected from the ends of the waveguide are
not visible at the output point, within the duration of the
simulation. If the reflection coefficient is worse than about
-50dB, it can be calculated from the VSWR, as shown in
fig. 2b. To do this, the Fourier transform is calculated along
a line of nodes in the centre of the waveguide, and the
magnitude is scanned for the minimum and maximum
values. The lengthl2 is chosen so that there is at least one
cycle at the lowest frequency of interest. For very small
reflections, the VSWR is close to unity and the method
becomes inaccurate.

Typical results are shown in fig. 3 for a ridged
waveguide modelled at two different resolutions (32 by 16
nodes and 64 by 32 nodes) and for a circular waveguide.
The geometry of the ridged waveguide is shown in fig. 4.
The performance of the ABC improves as the resolution is
increased. Also, if the widthw is reduced, the results get
worse. This suggests that it is the poor description of the
external corners in the TLM mesh that is the problem. The
circular waveguide was modelled on a Cartesian grid with
a staircase approximation and the same performance was
obtained with mesh sizes of 20 by 20 and 40 by 40 nodes.
Here, there is a large field concentration away from the
edges, and the effect of the external corners in the staircase
is not as pronounced.

For rectangular waveguides, the performance of modal
ABC’s approaches the limit of numerical precision.
Spurious reflections as low as -120dB are obtained with
single precision arithmetic and -300dB with double
precision. In the absence of external corners, an impulsive
excitation with the spatial distribution of any valid mode
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will always maintain exactly the same shape as it
propagates. When external corners are present, they tend to
drag the field, distorting the mode shape. It is felt that a
corner correction that can eliminate this phenomenon will
allow much better performance to be obtained with this
type of ABC. Nevertheless, modal ABC’s even without the
benefit of any corner correction give performance
comparable with other types of ABC.

EXAMPLE

The ABC’s for uniform waveguides of arbitrary shape
have been applied to the circular ports of the circular-to-
rectangular T-junction shown in fig. 5 [9]. A standard
modal ABC for rectangular waveguides was used on port
3. Only the dominant modes were considered. The ABC’s
were therefore placed away from the junction, to ensure
that all higher order modes would be sufficiently decayed.
The entire structure was discretized on a cubic mesh with
28 cells in the diameter of the circular waveguide. The S-
parameters are shown in fig. 6, along with results obtained
with a mode matching approach. Similar TLM results can
be obtained with one-way equation ABC’s [10], although
there is always the potential for instabilities with this type
of boundary.

CONCLUSIONS

The proposed boundary condition provides an
alternative method for terminating homogeneous
waveguides of arbitrary shape. The procedure does not
require any optimization of parameters and it is stable. It
can be used with multiple modes, whether propagating or
evanescent, if the ABC’s need to be placed close to a
discontinuity. In addition, the modal approach can be
extended to the characterization of one-ports or n-port
components.
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Fig. 1 – Modal Green’s functions for hybrid node
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Fig. 2 – Calculation of reflection coefficient:
(a) with reference structure, (b) from VSWR
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Fig. 3 – Spurious reflection coefficient for ridged and
circular waveguides terminated with modal ABC’s
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Fig. 5 – Geometry of the circular to sidecoupled
rectangular waveguide T-junction. Radius: 7.0 mm,

rectangular waveguide: WR-62 (16.0 mm by 8.0 mm)
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Fig. 6 – Magnitude of the S-paramters of the circular to
sidecoupled rectangular waveguide T-junction.
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